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a  b  s  t  r  a  c  t

Sherry  vinegar  is  a  much  appreciated  product  from  Jerez-Xérès-Sherry,  Manzanilla  de  Sanlúcar  and  Vinagre
de  Jerez  Protected  Designation  in southwestern  Spain.  Its  complexity  and  the  extraordinary  organoleptic
properties  are acquired  thanks  to  the  method  of production  followed,  the  so-called  “criaderas  y solera”
ageing  system.  Three  qualities  for  Sherry  vinegar  are  considered  according  to  ageing  time  in oak  barrels:
“Vinagre  de  Jerez”  (minimum  of 6  months),  “Reserva”  (at  least  2 years)  and  “Gran  Reserva”  (at  least  10
years).

In  the  last  few years,  there  has been  an increasing  need  to develop  rapid,  inexpensive  and  effective
analytical  methods,  as  well  as  requiring  low  sample  manipulation  for the  analysis  and  characterization
of  Sherry  vinegar.  Fluorescence  spectroscopy  is emerging  as  a competitive  technique  for  this  purpose,
since  provides  in  a few  seconds  an  excitation-emission  landscape  that  may  be used  as  a  fingerprint  of  the
vinegar.

Multi-way  analysis,  specifically  Parallel  Factor  Analysis  (PARAFAC),  is  a  powerful  tool  for  simultaneous
determination  of  fluorescent  components,  because  they  extract  the  most  relevant  information  from  the
data  and  allow  building  robust  models.  Moreover,  the  information  obtained  by PARAFAC  can  be  used  to
build  robust  and  reliable  classification  and  discrimination  models  (e.g.  by  using  Support  Vector  Machines

and  Partial  Least  Squares-Discriminant  Analysis  models).

In this  context,  the  aim  of  this  work  was  to study  the  possibilities  of  multi-way  fluorescence  linked
to  PARAFAC  and  to  classify  the  different  Sherry  vinegars  accordingly  to  their  ageing.  The results  demon-
strated  that  the  use  of the  proposed  analytical  and  chemometric  tools  are  a  perfect  combination  to  extract
relevant  chemical  information  about  the  vinegars  as  well  as  to classify  and  discriminate  them  considering
the  different  ageing.
. Introduction

Wine vinegar is the result of two fermentation processes (the
onversion of sugars of the must into ethanol by yeasts and the oxi-
ation of the ethanol to acetic acid by acetic acid bacteria). From

 technological point of view, there are two well defined meth-
ds for its production: fermentation with surface and submerged
ulture. In the first one, the acetic acid bacteria are placed on the

ir–liquid interface in direct contact with atmospheric air. Thus,
xygen availability to the acetic acid bacteria is not boundless, and

 long period of time is required to obtain a high acetic degree

∗ Corresponding author.
E-mail  address: jmar@life.ku.dk (J.M. Amigo).

039-9140/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2011.11.014
© 2011 Elsevier B.V. All rights reserved.

[1]. This process usually takes place in wood barrels. As a conse-
quence, chemical modifications related with ageing and with the
microbiological activity occur at the same time. All these factors
provide characteristic organoleptic properties to these products,
being highly appreciated by consumers. Hence, vinegar produced
by slow traditional surface methods, such as Sherry vinegar, gen-
erally fetches higher prices due to its great sensory quality [2].

Sherry  vinegar is commodity produced in Jerez-Xérès-Sherry,
Manzanilla de Sanlúcar and Vinagre de Jerez Protected Designation of
origin in south-western Spain [1]. Its main features are a high acetic
degree (legally at least 7◦) and a special flavour, which resembles

that of Sherry wine. Its complexity is the consequence of chemi-
cal composition of the product, and the extraordinary organoleptic
properties are acquired thanks to the methods of production fol-
lowed, the so-called criaderas y solera system or añada [3]. The first
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ne consists of a dynamic ageing system in contrast with the not so
sual static method añada, in which vinegar is produced and aged

n a single butt.
The  Regulations establish three categories for Sherry vinegar

ccording to their ageing time in oak wood barrels: Vinagre de Jerez
minimum of 6 months), Reserva (at least 2 years) and Gran Reserva
at least 10 years) [4]. These three qualities of vinegars have differ-
nt price in the market due to the fact that the longer ageing time
he better quality of vinegars and higher cost of its production. This
act makes that these products are subject to frequent frauds. By
his reason, it is necessary more objective analytical methodologies
o guarantee the authenticity.

Vinegar  characterization comprises a wide range of values
btained from physicochemical and sensory parameters [5]. The
omposition and sensory characteristics of Sherry vinegar have
een studied by different authors. The changes of several compo-
ents (volatile compounds, polyphenols, etc.) during ageing have
lso been studied [6–8]. However, up to now, there are scarce
esearches to distinguish vinegars belonging to the three different
ategories. Recently, Callejón et al. [9] studied aroma composi-
ion, key odorants and sensory profile of the different categories
f Sherry vinegar.

The  most commonly reported methods for the analysis and char-
cterization of Sherry vinegar, such as gas chromatography–mass
pectrometry (GC–MS) [9], high-performance liquid chromatog-
aphy (HPLC) [2] or capillary electrophoresis (CE) [10], are often
ime-consuming, expensive, requires highly trained staffs [11]. The
ange of compounds, which must be quantified to ensure authen-
icity, is continuously increasing. This demand is due to the high
osts connected to routine use of sensory evaluation and the lack
f satisfactory instrumental methods [12]. Consequently, there has
een a growing need to develop rapid, inexpensive and effective
nalytical methods in the last years, as well as requiring low sample
anipulation [13,14].
Fluorescence  spectroscopy is emerging as a competitive tech-

ique in the field of characterization and classification of intact
ood [15]. Fluorescence spectroscopy is a non-destructive method,
haracterized by its high sensitivity and specificity and also by its
peed and relatively cost. It is reported to be up to 1000 times more
ensitive than other spectrophotometric techniques [11,16]. For
nstance, it has been demonstrated to be suitable for the analysis
nd authentification of different food systems [15], differentiating
he botanical origin of honey [17], identifying the geographic origin
f cheeses [18] or wines according to variety, typicality and ageing
19–21], monitoring the texture of meat emulsions [22], classifying
randies and wine distillates [23] or characterizing ice cream for-
ulations [23] and ripening of Cabernet Franc grapes [11]. Grapes

nd wines contain a wide range of fluorescent compounds most
f which are polyphenols [20]. The types and amounts of these
olecules vary as a function of the variety and of the maturity of

rapes. Besides, wine processing and ageing also have effects on the
henolic compounds [21]. Apart of polyphenols, other fluorescent
olecules present in wine are amino acids, such as tryptophan,

nd vitamins, such as vitamin A (retinol) and vitamins of the B-
omplex, which are most abundant in wines [20]. Fluorescence
pectroscopy has been rarely applied in vinegar; hence, there is
ittle information about its fluorescence profile. However, this prod-
ct is derived from wine, and it should have similar fluorescent
ompounds.

Intact food, and specifically speaking, vinegar is a complex
hemical system. Therefore, the fluorescence signals arising from
hose systems are a combination of individual signals from differ-

nt intrinsic fluorescent molecules, at the same time influenced by
he physical–chemical environment of the food matrix (tempera-
ure, color, pH, etc.). To handle this complexity, multivariate and

ulti-way data analysis can be applied [15].
 88 (2012) 456– 462 457

The  analysis of multi-component mixtures can be hindered
when the conventional excitation or emission spectra are mea-
sured at a single emission or excitation wavelength, respectively.
However, instead of measuring a single emission spectrum at a
selected excitation wavelength �ex, a set of fluorescence spec-
tra at different �ex can be recorded. As a result, a bi-dimensional
landscape is obtained for each sample, the so-called fluorescence
excitation–emission matrix (EEM) [24] (Fig. 1). The main advantage
of EEMs is that they contain more information about the fluorescent
species than conventional excitation and emission spectra, because
they include emission bands excited at varying excitation wave-
lengths that potentially correspond to different emissive species.

The  potential of EEM technique can be improved by applying
multi-way methods in the analysis of the fluorescence results such
as Parallel Factors Analysis (PARAFAC) [25–27]. Multi-way data
analysis is a powerful tool for simultaneous determination of vari-
ous fluorescent components, because it extracts the most relevant
information from the data and allows building further robust cal-
ibration and/or classification models. Multi-way techniques are
able to extract selective information (pure excitation and emission
spectra for each fluorescent molecule as well as the relative con-
centration of them in each sample) without the use of separation
or extraction methods [25–27].

With  this selective information it becomes easier the task of
developing robust and reliable classification methods by using
techniques as Partial Least Squares-Discriminant Analysis (PLS-DA)
[28] or Support Vectors Machine for classification (SVM) [29]. Thus,
the development of classification models, by using the selective
results obtained by multi-way techniques, will enable the gener-
ation of very accurate and robust classification tools for detecting
any fraudulent sample or counterfeits in vinegars.In this context,
the aim of this work is the development of a combined methodology
that uses:

(1)  Multi-dimensional fluorescence for the intact and fast mea-
surement  of different Sherry vinegars and for obtaining the
excitation–emission matrices (EEMs) which were described
and  interpreted according to the literature.

(2)  PARAFAC as the multi-way technique to extract the selective
information of fluorescence EEM.

(3)  Classification techniques for developing robust classification
models: PLS-DA and SVM-classification.

2. Brief description of PARAFAC, PLS-DA and SVM

The  multi-way (PARAFAC) and multivariate (PLS-DA, SVM)
techniques used in this work have been widely described in the lit-
erature [25,28,29]. Therefore, we  will briefly describe them below.
The readers are encouraged to read the suggested references in each
section for further information.

2.1.  PARAFAC as a standard method to analyse EEM datasets

PARAFAC model [25–27] is becoming one of the standard tools
for analysing EEM landscapes [15]. This is due to the intrinsic linear
relationship between the excitation and emission intensities with
the concentration of each component. The principle of PARAFAC
decomposition is to minimize the sum of the square of the residual,
eijk, as indicated in Eq. (1), based on a least-squares algorithm:

x =
F∑

a b c + e (1)
ijk

f =1

if jf kf ijk

The  element xijk represents the data for sample i in the corre-
sponding excitation j and emission k wavelength. The three way
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ig. 1. Excitation–emission landscape obtained for a vinegar sample by using EEM
ample.

rray, X, is decomposed into a set of sample scores (aif), loadings for
he excitation mode (bif) and loadings for the emission mode (cif).
he number of factors, F (i.e. the number of components) describes
he systematic variation in the data array, lefting in the residuals
he noise associated to the measurements. As an example, a graph-
cal representation of the decomposition of X by PARAFAC model
nto two factors is given in Fig. 2.

One of the main advantages of PARAFAC with respect to other
esolution techniques is the uniqueness of the solution. That
s, there are no mathematical ambiguities in the final model.
herefore, PARAFAC model can be seen as a complete chemical
escription of the fluorescent molecules involved in the analysed
amples.

.2. PLS-DA

Partial Least Squares-Discriminant Analysis (PLS-DA) is a PLS2-
ased classification method [28,30]. Thus, the response matrix Y

I,C), also called dummy  matrix in PLS-DA context, contains as many
olumns C as classes. In our case, since there are three classes (six
onths, 2 years and 10 years ageing) Y will contain three columns.

he values on Y are 0 for each sample not belonging to a determined

ig. 2. Principles of a PARAFAC decomposition of a three way data array, X into two factor
n  this figure caption, the reader is referred to the web  version of the article.)
Rayleigh scattering (first and second order scattering) has been removed from the

class  and 1 if the sample belongs to the assigned class. Then, the PLS
model is calculated in the usual way [31] and the classification is
then based on a Bayesian approach using the scores obtained from
PLS. The classification ability of the model is assessed by using the
classical parameters of sensitivity, specificity and the classification
error.

2.3. SVM for classification

Support  Vector Machines (SVM) is a classification technique
developed by Vapnik group [29] based on kernel learning. SVM is
gaining in interest respect to other classification techniques due
to its ability to perform linear and nonlinear classifications, being
successfully applied to a number of classification problems [32,33].

Briefly, the classification problem may  be restricted to a two-
class problem (Fig. 3). The quest is to find the optimal separating

hyperplane (OSH) between the different classes involved that will
work well on unknown samples. This is done by maximizing the
distance between the hyperplane and the closest samples of the
training set (the support vectors).

s (denoted as blue and green profiles). (For interpretation of the references to color
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Fig. 3. Representation of the classification of two  classes (red and blue dots). The
solid line represents the optimal separating hyperplane (OSH); whereas the dashed
l
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ines identify the margin. The dots on the margin are called support vectors. (For
nterpretation of the references to color in this figure caption, the reader is referred
o  the web  version of the article.)

To determine the optimal hyperplane it is necessary to solve the
ollowing problem shown in Eq. (2):

in ˚(�, �) = 1
2

‖ω‖2 + C

I∑

i=1

�i (2)

here  ω is a weight vector, C a parameter that control the error of
isclassification, and � a lack variable that will allow the violation

f the margin constraints of the hyperplane.

. Materials and methods

.1.  Samples

A  total of 19 Sherry vinegars from 14 different producers were
nalysed in this study (Table 1): 6 “Vinagres de Jerez” (VJ), 9 “Vinagres
e Jerez Reserva” (VR) and 4 “Vinagres de Jerez Gran Reserva” (VGR).
ll of them were acquired from local supermarkets and were stored
t room temperature. Samples were filtered before analysis.

.2.  Fluorescence measurements

Multi-dimensional fluorescence spectra were obtained with

 Varian Cary-Eclipse Fluorescence Spectrometer (Varian Iberica,
adrid, Spain) equipped with a thermostatted (25 ◦C) cuvette

older, a xenon discharge lamp pulsed at 80 Hz with a half
eak height of ∼2 �s (peak power equivalent to 75 kW), two

able 1
herry vinegars analysed.

Categories Samples Producers

Jerez VJ1 1
VJ2 2
VJ  3 3
VJ4  4
VJ5  6
VJ6  7

Jerez Reserva VR1 8
VR2  9
VR3  10
VR4  11
VR5  12
VR6  4
VR7  13
VR8  3
VR9  14

Jerez Gran Reserva VGR1 1
VGR2 12
VGR3  1
VGR4  4
 88 (2012) 456– 462 459

Czerny-Turner monochromators and a R-298 photomultiplier tube
detector. Measurements were carried out in a standard quartz cell
(10 mm × 10 mm).  The spectrometer was interfaced to a computer
with Cary-Eclipse software for Windows 98/NT for spectral acqui-
sition and exportation.

The  EEM fluorescence spectra were obtained by recording the
emission spectra (from 300 to 800 nm,  at 1 nm intervals) cor-
responding to excitation wavelengths ranging between 250 and
700 nm,  set at 5 nm steps between successive excitation spectra. For
these measurements, excitation and emission slits were both set at
5 nm,  and scan rate was  fixed to 600 nm min-1. EEM fluorescence
spectra were registered by triplicate for each sample.

3.3. Software

The obtained EEM landscapes were exported, and the Rayleigh
scattering (first and second order scattering) was removed
for each sample by using in-house routines working under
MATLAB environment [34] and freely available on the web
(http://www.models.life.ku.dk/. Last access September 2011).

PARAFAC  model was  calculated by using EEMizer [36]. EEMizer
is a new automatic PARAFAC model builder for fluorescence EEM
data recently developed by Bro and Vidal [36]. The algorithm can be
freely downloaded from the web  (http://www.models.life.ku.dk/.
Last  access September 2011). It works under MATLAB environment
[34] and requires PLS-Toolbox [35]. PLS-DA and SVM models were
calculated by using PLS-Toolbox [35] also working under MATLAB
environment [34].

4.  Results and conclusions

Fig.  4 depicts three landscapes belonging to different types of
vinegars, after removing Rayleigh scattering. The areas in which
the compounds appear vary between samples, allowing us to
confirm an a priori difference between vinegars with different age-
ing. For instance, most of the vinegars named VGR (Gran reserva)
showed a well defined and highly intense fluorescent area between
480–510 nm in the excitation and 540–610 nm in the emission
wavelength range (central black spot in Fig. 4). On  the contrary, the
shape and the position of this area for VR and VJ vinegars are not as
stable as for VGR vinegars. Further conclusions on the fluorescence
signal can be extracted after PARAFAC application.

4.1. PARAFAC results

After  the application of EEMizer, the best PARAFAC model was
found to be the one with non-negativity constraint in the three
modes. Five fluorescent compounds were found to be the main
ones in the vinegars (Fig. 5), giving a final model that explains
more than 99% of the variance and with a core consistency over
zero (Fig. 6). Both parameters indicated that the model was enough
robust and that it corresponded to the inherent chemical behaviour
of the vinegars.

As  shown in Fig. 5, the first-component excitation profile (blue)
has a maximum centered around 520 nm and an emission max-
imum at 570 nm,  approximately. The pair of excitation/emission
wavelengths corresponding to the maximum fluorescent intensity
for the second component (green) is 460/520. The third compo-
nent (red) is a peak centered around 570 and 630 nm, respectively.
The fourth component (cyan) has an excitation maximum around
370, with a shoulder at 230 nm,  and the emission one centered at
470 nm.  Finally, the fifth component (purple) is situated close to

the third one, with an excitation maximum around 630 nm, and an
emission broad peak centered between 670 and 740 nm.

According to Airado-Rodriguez et al. [19], fluorescent proper-
ties of compounds are highly dependent on the working medium,
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ig. 4. Excitation–emission landscape obtained for vinegars with different ageing
ppearing on each picture denotes the removed Rayleigh scattering (first and secon
gure  caption, the reader is referred to the web version of the article.)

eing influenced by variables such as the acidity or the compo-
ition of the medium. It is known that fluorescent behaviour is
ighly affected by the pH and sometimes by the content of organic
olvents such as ethanol or acetic acid. Vinegars fluorescent com-
ounds have not been reported yet, but, as all vinegars analysed

n this work are wine vinegars, at least some of them should be
he same. Hence, according to literature, the best known fluores-
ent molecules in wines such as phenolic acids, cinnamic acids,
oumarins, Maillard reaction products, tannins and other unknown
uorescent compounds match well with those of PARAFAC compo-
ent 4 [20,21,37]. Zhu et al. [38] found that the maximum excitation
nd emission wavelengths measured at 400 and 493 nm had high
orrelation with 5-hydroxymethylfurfural (HMF) concentration in
pple juice. This compound appeared during the Maillard reaction
nd it is has been determined in Sherry vinegars [6]. Sádecká et al.
13] reported that the emission spectra of caramel recorded after
xcitation at 390 nm showed a maximum located around 482 nm,
ence could be also associated with PARAFAC component 4. Other
ompound present in Sherry vinegar is 5-(hydroxymethyl)furan-
-carbaldehyde in vinegar has traditionally been attributed to the
mployment of cooked must or to the addition of caramel [1]. Vita-
in  B2 and the principal forms of vitamin B2 found in nature such as

iboflavin, flavin mononucleotide (FMN), and flavin adenine dinu-
leotide (FAD) have an emission/excitation maximum around 450
nd 550 nm,  respectively [37] and hence, these compounds could
e related to PARAFAC component 2.

On the other hand, some acetic bacteria strains present in
inegar form pig colonies and are able to produce brown pig-

ents which are soluble in water due to porphyrins [39]. These

ompounds could be associated to the PARAFAC component 1,
ccording to the fluorescent properties described by Christensen
t al. [15].
color scale varies between zero (white) and 26 (dark red). The two black stripes
r scattering) from the samples. (For interpretation of the references to color in this

The scores plot depicted in Fig. 5 denoted two  important aspects:

- The good repeatability of the EEM measurements, since all repli-
cates  for each sample appeared together.

-  A good separation between ten years and six months ageing
samples. The two  years ageing class had a peculiar shape. It
was  also quite well separated from the other classes, but totally
divided  into two sub-clusters. Vinegars of this class have been
at  least two  years in wood barrels. Hence, all Sherry vinegars
with  an ageing between two and ten years belong in this cat-
egory.  This wide range among time of ageing of these vinegars
can  explain the differences observed among them. Thus, vine-
gars  with more years of ageing will be more similar to vinegars
from  Gran Reserva category, and, on the contrary, vinegars with
only  two years of ageing will be near vinegars from 6 month
class.

This  lecture of the data was  done by using the first and the sec-
ond factor in PARAFAC (the blue and green profiles in the excitation
emission loadings plots of Fig. 5, respectively). To fully visualize
the real separation between the classes, all possible combination
between factors should be checked. PARAFAC gave us a really good
qualitative visualization of the chemical model as well as a first
impression of the separation between different classes. Neverthe-
less, to be able to quantify this separation (in terms of classification),
advanced classification tools were applied by using the scores
obtained by PARAFAC.
4.2.  Classification results

For  developing robust classification models, the samples were
divided into two groups. Around the 75% of the samples were
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Fig. 5. PARAFAC results obtained by using EEMizer. The best model was  found with five factors. The scores plot depict the relationship between Factors 1 and 2 (blue and
g  references to color in this figure caption, the reader is referred to the web  version of the
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Fig. 6. Percentages of explained variance (solid line with red circles) and core
reen, respectively, in the excitation–emission loadings). (For interpretation of the
rticle.)

andomly selected for the calibration and cross-validation mod-
ls; whereas the other 25% of the samples was  used as external
est. The cross validation procedure was performed in a segmented

anner by excluding all the replicates for the same sample in
ach segment (leave-replicates-out). The ability of PLS-DA and
VM for classifying the different samples with their correspond-
ng class was assessed by calculating statistical parameters as
ensitivity, specificity and classification error of calibration (CAL),
ross-validation (CV) and prediction (PRED) were calculated and
ompared.

The results obtained for both models are shown in Table 2. In
eneral, both methods performed quite satisfactorily. The results
btained between CAL, CV and PRED were pretty similar, denoting
he robustness of the model.

The  best PLS-DA model was obtained by using 4 latent variables
LVs). This number was selected accordingly to the PRESS curve. In
he optimization of SVM, log10 (C) and log10 (�) were found to be
.5 and 0.5, respectively.

For  PLS-DA model, sensitivity, specificity and classification
rror obtained for the three classes was among the expectations.
he two years class was  the worse classified, with classification

rrors close to 25% and with sensitivity and specificity close to
0%. Instead, the results obtained for SVM model were signifi-
antly good in terms of the ability of predicting external samples
PRED values). For all the classes the results for sensitivity and

consistency  (dashed line with blue circles) with the number of components. (For
interpretation of the references to color in this figure caption, the reader is referred
to  the web version of the article.)
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Table  2
Sensitivity, specificity and classification error obtained for PLS-DA and SVM.

PLS-DA SVM

10 years 2 years 6 months 10 years 2 years 6 months

Sensitivity CALa 0.875 0.778 0.800 1.000 1.000 1.000
Sensitivity CV 0.875 0.722 0.800 0.714 0.889 1.000
Sensitivity PRED 1.000 0.778 0.800 1.000 1.000 1.000
Specificity CAL 0.786 0.889 0.885 1.000 1.000 1.000
Specificity CV 0.679 0.778 0.846 1.000 0.882 0.920
Specificity PRED 0.857 0.778 0.846 1.000 1.000 1.000
Class. Error CAL 0.170 0.167 0.158 0.000 0.000 0.000
Class. Error CV 0.223 0.250 0.177 0.143 0.114 0.040
Class. Error PRED 0.071 0.222 0.177 0.000 0.000 0.000

a cal refers to calibration sub-set. CV refers to the cross-validation results of the
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alibration sub-set. PRED refers to the external prediction sub-set (“blind” samples).

pecificity were 100%; whereas the classification error obtained
as 0%.

.  Conclusions

The complete methodology proposed in this paper (EEM
easurements, a multi-way resolution model (PARAFAC) and

ifferent classification approaches) has resulted in a per-
ect understanding of the fluorescent molecules involved in
ifferent categories of Sherry vinegar and their adequate
lassification accordingly to the time of ageing in wood
arrels:

 EEM measurements were robust and shown high repeatability.
 PARAFAC gave information about the fluorescent molecules and
their relative amount for each sample.

 SVM demonstrated to be the most adequate classification tech-
nique  for such a problem.

That is, this paper reports a fast, clean and no destructive
without any sample preparation) methodology for assessing the
ategory of Sherry vinegars. This may  promote the usage of the
roposed methodology as a fast technique to detect fraudulent
amples and to assess the quality of the final product in compari-
on with other similar products found in supermarkets. The critical
spect of the classification results might be the few number of
amples used for the study (a total of 57 samples, three replicates
or 19 different varieties of Sherry vinegars). Nevertheless, since
he methodology has been satisfactorily demonstrated its useful-
ess, the database will be increased with more vinegars of different
roducers.
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